
Efficient Memory Management
Giulio Eulisse - CERN (giulio.eulisse@cern.ch)
Original lectures by Lassi Tuura (FNAL, now Google)

1

Graphics Toolkits

About These Lectures
These lectures will address memory use and management in large scale
scientific computing applications, with Linux/C++ focus.

I will introduce general concepts mainly through specific concrete
examples common to everyday developer work. I will focus on common
aspects on commodity hardware, in areas I am personally experienced
in – this is not a tour of absolutely everything there is to know about
memory management.

2

Graphics Toolkits

http://infn-esc.github.io/esc15/memory 
All the exercise material for these lectures

3

http://infn-esc.github.io/esc15/memory

Graphics Toolkits

Additional Reading
J. Hennessy, D. Patterson, 
Computer Architecture: A Quantitative Approach, 
5th edition (2011), ISBN 978-0-12-383872-8

U. Drepper,  
What Every Programmer Should Know About Memory, 
http://people.redhat.com/drepper/cpumemory.pdf

D. Bovet, M. Cesati, 
Understanding the Linux Kernel, 
3rd Edition, O’Reilly 2005, ISBN 0-596-00565-2

http://techreport.com, reviews with technical detail

4

http://techreport.com

Graphics Toolkits

Why Memory Management Matters?
So, you’ve got a problem to solve. You’ve designed an algorithm to solve
it. Now all you need is it code it up and you are done, right?

Actually, you have just begun. Your algorithm will translate to real
machine code, which will run on very real physical systems, which have
very real practical limitations.

A complete design must account for the real world limitations. This
means “the solution” will vary over time with technology evolution.

5

Graphics Toolkits

Memory performance evolution compared with processor performance

The Performance Gap

6

Graphics Toolkits

Why Memory Management Matters?
Different solutions to the same problem vary dramatically in real life
performance.

Algorithmic and data structure changes can easily result in several
orders of magnitude improvement and regression. Always research this
option first.

In some cases, changes in memory use and management can also
easily produce orders of magnitude performance wins and losses –
even without major logical change to the underlying algorithms.
Common critical factors include memory churn, poor locality, and in
multi-processing, memory contention.

In other cases, simple, subtle changes can yield performance wins in
the 1-10% range. When % of your computing capacity is counted in
rows of racks and days of processing, this still matters a great deal
in practice! The small stuff still directly affects how much science
you get out of your funding. 7

Graphics Toolkits

Memory Management at 10’000ft
Physical hardware

CPU pipelines and out-of-order execution; memory management unit
[MMU] and physical memory banks and access properties; interconnect –
front-side bus [FSB] vs. direct path [AMD: HT, Intel: QPI]; cache coherence
and atomic operations; memory access non-uniformity [NUMA].

Operating system kernel

Per-process linear virtual address space; virtual memory translation from
logical pages to physical page frames; page allocation and swapping; file
and other caching; shared memory.

Run time

Code, data, heap, thread stacks; acquiring memory [sbrk/mmap]; sharing
memory [shmget/mmap/fork]; C/C++ libraries and containers; application
memory management.

8

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest

matters.

#2: Memory overhead, alignment & churn matter.
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time

in the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory

wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

9

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest

matters.

#2: Memory overhead, alignment & churn matter
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time

in the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory

wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

10

Key factor #1: correctness

Find the error:

#include <iostream>

int main(int argc, char **argv) {
 int *foo = new int[10];
 for (int i = 0; i <= 10; ++i)
 foo[i] = i;
}

11

Key factor #1: correctness

Find the error:

#include <iostream>

int main(int argc, char **argv) {
 int *foo = new int[10];
 for (int i = 0; i <= 10; ++i)
 foo[i] = i;
}

12

Key factor #1: correctness

• Find the error:
//___//
// //
// This macro reads ACORDE DDL Raw Data and //
// converts it into Digits //
// //
//__ //

void ACORDERaw2Digits(Int_t nEvents = 1, char* fileName =
alien:///alice/data/2008/LHC08a_ACORDE/000016788/raw/08000016788014.20.root")
{
 // Reads DDL data from fileName

 TStopwatch timer;
 timer.Start();

 TGrid::Connect("alien://");

 AliRawReader* rawReader = 0x0;
// rawReader = new AliRawReaderFile(fileName); // DDL files
 rawReader = new AliRawReaderRoot(fileName); // DDL files

 AliACORDERawStream* rawStream = new AliACORDERawStream(rawReader);

 for (Int_t i=0; i<nEvents; i++) {
 printf("=========== EVENT %d ===========\n",i);
 if (!rawReader->NextEvent())
 break;

 rawStream->Reset();
 if (!rawStream->Next())
 break;
 printf("Data size is %d\n",rawStream->DataSize());
 for (Int_t j=0; j<4; j++)
 printf(" %x",rawStream->GetWord(j));
 printf("\n");
 }

 delete rawReader;
 delete rawStream;

 timer.Stop();
 timer.Print();
}

//___//
// //
// This macro reads ACORDE DDL Raw Data and //
// converts it into Digits //
// //
//__ //

void ACORDERaw2Digits(Int_t nEvents = 1, char* fileName = "rawdata.root")
{
 // Reads DDL data from fileName

 TStopwatch timer;
 timer.Start();

// Creates a TreeD to dump Digits

 AliRunLoader* rl = AliRunLoader::Open("galice.root");

 AliACORDELoader* loader = (AliACORDELoader*) rl->GetLoader("ACORDELoader");

 if(!loader) {
 AliError("no ACORDE loader found");
 return kFALSE; }

 TTree* treeD = loader->TreeD();
 if(!treeD) {
 loader->MakeTree("D");
 treeD = loader->TreeD(); }

 AliACORDEdigit digit;
 AliACORDEdigit* pdigit = &digit;
 const Int_t kBufferSize = 4000;

 treeD->Branch("ACORDE", "AliACORDEdigit", &pdigit, kBufferSize);

 AliRawReader* rawReader = 0x0;
// rawReader = new AliRawReaderFile(fileName); // DDL files
 rawReader = new AliRawReaderRoot(fileName); // DDL files

 AliACORDERawStream* rawStream = new AliACORDERawStream(rawReader);

/**
 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
 * *
 * Author: The ALICE Off-line Project. *
 * Contributors are mentioned in the code where appropriate. *
 * *
 * Permission to use, copy, modify and distribute this software and its *
 * documentation strictly for non-commercial purposes is hereby granted *
 * without fee, provided that the above copyright notice appears in all *
 * copies and that both the copyright notice and this permission notice *
 * appear in the supporting documentation. The authors make no claims *
 * about the suitability of this software for any purpose. It is *
 * provided "as is" without express or implied warranty. *
 **/

//---
// Produces the data needed to calculate the quality assurance.
// ACORDE QA for Hits, Digits, RAW and ESD's
//
// Authors:
//
// Luciano Diaz Gonzalez <luciano.diaz@nucleares.unam.mx> (ICN-UNAM)
// Mario Rodriguez Cahuantzi <mrodrigu@mail.cern.ch> (FCFM-BUAP)
// Arturo Fernandez Tellez <afernan@mail.cern.ch (FCFM-BUAP)
//
// Created: June 13th 2008
//---

// --- ROOT system ---
#include <TClonesArray.h>
#include <TFile.h>
#include <TH1F.h>
#include <TH2F.h>
#include <TDirectory.h>
#include <TObject.h>
// --- Standard library ---

// --- AliRoot header files ---
#include "AliESDEvent.h"
#include "AliLog.h"
#include "AliACORDEdigit.h"
#include "AliACORDEhit.h"
#include "AliACORDERecPoint.h"
#include "AliACORDEQADataMaker.h"
#include "AliQAChecker.h"
#include "AliACORDERawReader.h"
#include "AliACORDERawStream.h"

ClassImp(AliACORDEQADataMaker)

//__
AliACORDEQADataMaker::AliACORDEQADataMaker():AliQADataMaker(AliQAv1::GetDetName(AliQAv1:
:kACORDE), "ACORDE Quality Assurance Data Maker")
{
 // Acorde QA Data Maker
}

//__
AliACORDEQADataMaker::AliACORDEQADataMaker(const AliACORDEQADataMaker& qadm):AliQADataMaker()
{
 SetName((const char*)qadm.GetName()) ;
 SetTitle((const char*)qadm.GetTitle());
}
//__
AliACORDEQADataMaker& AliACORDEQADataMaker::operator = (const AliACORDEQADataMaker& qadm)
{
 // Equal operator.
 this->~AliACORDEQADataMaker();
 new(this) AliACORDEQADataMaker(qadm);
 return *this;
}
//__
void AliACORDEQADataMaker::StartOfDetectorCycle()
{
 //Detector specific actions at start of cycle

}

//__
void AliACORDEQADataMaker::InitHits()
{

// create Hits histograms in Hits subdir
 TH1F *fAHitsACORDE[8];

#ifndef ALIACORDEQADATAMAKER_H
#define ALIACORDEQADATAMAKER_H
/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
 * See cxx source for full Copyright notice */

/* $Id: AliACORDEQADataMaker.h 25659 2008-05-030 15:13:46Z ldg $ */

// Produces the data needed to calculate the quality assurance.
// ACORDE QA for Hits, Digits, RAW and ESD's

// Authors:
//
// Luciano Diaz Gonzalez <luciano.diaz@nucleares.unam.mx> (ICN-UNAM)
// Mario Rodriguez Cahuantzi <mrodrigu@mail.cern.ch> (FCFM-BUAP)
// Arturo Fernandez Tellez <afernan@mail.cern.ch (FCFM-BUAP)
//
// Created: June 13th 2008
//---

#include "AliQADataMaker.h"

class AliACORDEQADataMaker: public AliQADataMaker {

public:
 AliACORDEQADataMaker() ; // constructor
 AliACORDEQADataMaker(const AliACORDEQADataMaker& qadm) ;
 AliACORDEQADataMaker& operator = (const AliACORDEQADataMaker& qadm) ;
 virtual ~AliACORDEQADataMaker() {;} // destructor

private:
 virtual void InitHits() ; //book hit QA histo
 virtual void InitDigits() ; //book Digit QA histo
 virtual void InitRaws() ; //book Digit QA histo
 virtual void InitRecPoints(); //book cluster QA histo
 virtual void InitESDs() ; //book ESD QA histo
 virtual void MakeHits(TTree * hits) ; //Fill hit QA histo
 virtual void MakeRaws(AliRawReader* rawReader) ;
 virtual void MakeDigits(TTree* digitsTree) ; //Fill Digit QA histo
 virtual void MakeRecPoints(TTree * clusters) ; //Fill cluster QA histo
 virtual void MakeESDs(AliESDEvent * esd) ; //Fill hit QA histo

/*******/

 virtual Int_t Add2DigitsList(TH1*, Int_t){return 0;};
 virtual Int_t Add2HitsList(TH1*, Int_t){return 0;};
 virtual Int_t Add2RecPointsList(TH1*, Int_t){return 0;};
 virtual Int_t Add2RawsList(TH1*, Int_t){return 0;};
 virtual Int_t Add2SDigitsList(TH1*, Int_t){return 0;};
 virtual void Exec(AliQAv1::TASKINDEX_t, TObject*){};
 virtual void EndOfCycle(AliQAv1::TASKINDEX_t){};
 virtual Int_t Add2ESDsList(TH1*, Int_t){return 0;};
 virtual TH1* GetDigitsData(Int_t){return 0;};
 virtual TH1* GetESDsData(Int_t){return 0;};
 virtual TH1* GetHitsData(Int_t){return 0;};
 virtual TH1* GetRecPointsData(Int_t){return 0;};
 virtual TH1* GetRawsData(Int_t){return 0;};
 virtual TH1* GetSDigitsData(Int_t){return 0;};
 virtual TObjArray* Init(AliQAv1::TASKINDEX_t, Int_t, Int_t){return 0;};
 virtual void Init(AliQAv1::TASKINDEX_t, TObjArray*, Int_t, Int_t){};
 virtual void StartOfCycle(AliQAv1::TASKINDEX_t, Bool_t){};
 virtual void EndOfDetectorCycle(AliQAv1::TASKINDEX_t, TObjArray**) {}
 virtual void InitSDigits(){};
 virtual void MakeHits(TClonesArray*){};
 virtual void MakeDigits(TClonesArray*){};
 virtual void MakeSDigits(TClonesArray*){};
 virtual void MakeSDigits(TTree*){};
 virtual void StartOfDetectorCycle() ;
/******/
 ClassDef(AliACORDEQADataMaker,1) // description

};

#endif // AliACORDEQADataMaker_H

void MakeACORDEFullMisAlignment(){
 // Create TClonesArray of full misalignment objects for ACORDE
 //
 const char* macroname = "MakeACORDEFullMisAlignment.C";
 // Activate CDB storage and load geometry from CDB
 AliCDBManager* cdb = AliCDBManager::Instance();
 if(!cdb->IsDefaultStorageSet()) cdb->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
 cdb->SetRun(0);

 AliCDBStorage* storage;

 //load geom from local file till ACORDE is not switched on by default in standard config-files
 if(TString(gSystem->Getenv("TOCDB")) == TString("kTRUE")){
 TString Storage = gSystem->Getenv("STORAGE");
 if(!Storage.BeginsWith("local://") && !Storage.BeginsWith("alien://")) {
 Error(macroname,"STORAGE variable set to %s is not valid. Exiting\n",Storage.Data());
 return;
 }
 storage = cdb->GetStorage(Storage.Data());
 if(!storage){
 Error(macroname,"Unable to open storage %s\n",Storage.Data());
 return;
 }

 AliCDBPath path("GRP","Geometry","Data");
 AliCDBEntry *entry = storage->Get(path.GetPath(),cdb->GetRun());
 if(!entry) Fatal(macroname,"Could not get the specified CDB entry!");
 entry->SetOwner(0);
 TGeoManager* geom = (TGeoManager*) entry->GetObject();
 AliGeomManager::SetGeometry(geom);
 }else{
 AliGeomManager::LoadGeometry(); //load geom from default CDB storage

 }
 // AliGeomManager::LoadGeometry("geometry.root");

 TClonesArray *array = new TClonesArray("AliAlignObjParams",60);
 TClonesArray &alobj = *array;

 TRandom *rnd = new TRandom(4321);
 Int_t j = 0;
 Double_t dx, dy, dz, dpsi, dtheta, dphi;

 // RS = local
 // sigma translation = 1 mm
 // sigma rotation = 0.5 degrees
 Double_t sigmatr = 2;
 Double_t sigmarot = 1;

 TString symname;
 TString basename = "ACORDE/Array";
 Int_t iIndex=0;
 AliGeomManager::ELayerID iLayer = AliGeomManager::kInvalidLayer;
 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,iIndex);

 for (Int_t imod=0; imod<60; imod++){
 dx = rnd->Gaus(0.,sigmatr);
 dy = rnd->Gaus(0.,sigmatr);
 dz = rnd->Gaus(0.,sigmatr);
 dpsi = rnd->Gaus(0.,sigmarot);
 dtheta = rnd->Gaus(0.,sigmarot);
 dphi = rnd->Gaus(0.,sigmarot);
 symname = basename;
 symname += imod;
 new(alobj[j++]) AliAlignObjParams(symname, volid, dx, dy, dz,dpsi, dtheta, dphi, kFALSE);
 }

 if(TString(gSystem->Getenv("TOCDB")) != TString("kTRUE")){
 // save on file
 const char* filename = "ACORDEfullMisalignment.root";
 TFile f(filename,"RECREATE");
 if(!f){
 Error(macroname,"cannot open file for output\n");
 return;
 }
 Info(macroname,"Saving alignment objects to the file %s", filename);
 f.cd();
 f.WriteObject(array,"ACORDEAlignObjs","kSingleKey");
 f.Close();
 }else{
 // save in CDB storage
 AliCDBMetaData* md = new AliCDBMetaData();
 md->SetResponsible("E. Cuautle & M. Rodriguez");
 md->SetComment("Full misalignment for ACORDE");
 md->SetAliRootVersion(gSystem->Getenv("$ARVERSION"));
 AliCDBId id("ACORDE/Align/Data",0,AliCDBRunRange::Infinity());
 storage->Put(array,id,md);

void MakeACORDEFullMisAlignment(){
 // Create TClonesArray of full misalignment objects for ACORDE
 //
 const char* macroname = "MakeACORDEFullMisAlignment.C";
 // Activate CDB storage and load geometry from CDB
 AliCDBManager* cdb = AliCDBManager::Instance();
 if(!cdb->IsDefaultStorageSet()) cdb->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
 cdb->SetRun(0);

 AliCDBStorage* storage;

 //load geom from local file till ACORDE is not switched on by default in standard config-files
 if(TString(gSystem->Getenv("TOCDB")) == TString("kTRUE")){
 TString Storage = gSystem->Getenv("STORAGE");
 if(!Storage.BeginsWith("local://") && !Storage.BeginsWith("alien://")) {
 Error(macroname,"STORAGE variable set to %s is not valid. Exiting\n",Storage.Data());
 return;
 }
 storage = cdb->GetStorage(Storage.Data());
 if(!storage){
 Error(macroname,"Unable to open storage %s\n",Storage.Data());
 return;
 }

 AliCDBPath path("GRP","Geometry","Data");
 AliCDBEntry *entry = storage->Get(path.GetPath(),cdb->GetRun());
 if(!entry) Fatal(macroname,"Could not get the specified CDB entry!");
 entry->SetOwner(0);
 TGeoManager* geom = (TGeoManager*) entry->GetObject();
 AliGeomManager::SetGeometry(geom);
 }else{
 AliGeomManager::LoadGeometry(); //load geom from default CDB storage

 }
 // AliGeomManager::LoadGeometry("geometry.root");

 TClonesArray *array = new TClonesArray("AliAlignObjParams",60);
 TClonesArray &alobj = *array;

 TRandom *rnd = new TRandom(4321);
 Int_t j = 0;
 Double_t dx, dy, dz, dpsi, dtheta, dphi;

 // RS = local
 // sigma translation = 1 mm
 // sigma rotation = 0.5 degrees
 Double_t sigmatr = 2;
 Double_t sigmarot = 1;

 TString symname;
 TString basename = "ACORDE/Array";
 Int_t iIndex=0;
 AliGeomManager::ELayerID iLayer = AliGeomManager::kInvalidLayer;
 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,iIndex);

 for (Int_t imod=0; imod<60; imod++){
 dx = rnd->Gaus(0.,sigmatr);
 dy = rnd->Gaus(0.,sigmatr);
 dz = rnd->Gaus(0.,sigmatr);
 dpsi = rnd->Gaus(0.,sigmarot);
 dtheta = rnd->Gaus(0.,sigmarot);
 dphi = rnd->Gaus(0.,sigmarot);
 symname = basename;
 symname += imod;
 new(alobj[j++]) AliAlignObjParams(symname, volid, dx, dy, dz,dpsi, dtheta, dphi, kFALSE);
 }

 if(TString(gSystem->Getenv("TOCDB")) != TString("kTRUE")){
 // save on file
 const char* filename = "ACORDEfullMisalignment.root";
 TFile f(filename,"RECREATE");
 if(!f){
 Error(macroname,"cannot open file for output\n");
 return;
 }
 Info(macroname,"Saving alignment objects to the file %s", filename);
 f.cd();
 f.WriteObject(array,"ACORDEAlignObjs","kSingleKey");
 f.Close();
 }else{
 // save in CDB storage
 AliCDBMetaData* md = new AliCDBMetaData();
 md->SetResponsible("E. Cuautle & M. Rodriguez");
 md->SetComment("Full misalignment for ACORDE");
 md->SetAliRootVersion(gSystem->Getenv("$ARVERSION"));
 AliCDBId id("ACORDE/Align/Data",0,AliCDBRunRange::Infinity());
 storage->Put(array,id,md);

ALICE Experiment Offline Software:
~5M lines of code

CMS Experiment Offline Software:
~8M lines of code 13

Key factor #1: correctness

Tools matter:
• GDB / LLDB
• Valgrind
• IgProf
• Address Sanitizer
• Clang Static Analyzer
• strace, LD_DEBUG & /proc <pid>

Real world scenarios is not something which can be captured on a slide, in a
tutorial or in half an hour exercise. Mastering debug and profiling tools is as
crucial as knowing your "Algorithms Book", book to cover.

We need tools to help us dealing with large, mostly unfamiliar, codebases and to
find our errors.

14

Debuggers: GDB & LLDB

A debugger is a tool which is capable of attaching to a running process
(or the remaining of a dead one) and provide information on what is
the current status of execution, eventually taking control of the
execution flow.

Two main open source choices:

Part of GCC suite, GPL

LLDB
Part of LLVM / clang suite, BSD

15

GDB: startup

eulisse@hexagon-5:~> gdb
GNU gdb (GDB) SUSE (7.5.1-1.0000.0.3.1)
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>
This is free software: you are free to change and redistribute
it.
There is NO WARRANTY, to the extent permitted by law. Type
"show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-suse-linux".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
(gdb)

16

GDB: help

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help all" for the list of all commands.
Type "help" followed by command name for full documentation.
Type "apropos word" to search for commands related to "word".
Command name abbreviations are allowed if unambiguous.

gdb comes with an
inline help you can use

at any time.

17

GDB: the print command

(gdb) print "Hello world"
$1 = "Hello world"

(gdb) p "Hello world"
$2 = "Hello world"

(gdb) p 1 + 1
$3 = 2

(gdb) p 0x10
$4 = 16

(gdb) p/x 16
$5 = 0x10

(gdb) p/t 16
$5 = 0x10000

print command allows
you to print constants or
the content of a variable.
Results of this operation

gets assigned to
increasing $N variables.

Modifiers can also be
passed by adding the

suffix /<modifier>

18

GDB: the print command

(gdb) p 0x10
$4 = 16

(gdb) p/x 16
$5 = 0x10

(gdb) p/t 16
$6 = 0x10000

(gdb) printf "%s %i\n", "foo", 2
foo 2

Modifiers can also be
passed by adding the
suffix /<modifier> or

more advanced
formatting can be done

using the printf
command.

19

GDB: a simple program

#include <iostream>

int main() {
 const char *a = "Hello world";
 std::cout << a << std::endl;
 return 0;
}

Write to a file called hello.cc the following:

Compile it and test it, making sure you add the -g option:

eulisse@hexagon-5:~> c++ -g -o hello hello.cc
eulisse@hexagon-5:~> ./hello
Hello world

20

http://hello.cc
http://hello.cc

GDB: a simple program

hexagon-5:~> gdb ./hello
Reading symbols from /home/fi/eulisse/hello...done.
(gdb)

(gdb) file ./hello
Reading symbols from /home/fi/eulisse/hello...done.
(gdb)

You can load your executable either passing it as a command line
argument or by using the file command.

Or

21

GDB: listing and running

(gdb) file ./hello
Reading symbols from hello...done.
(gdb) list
1 #include <iostream>
2 int main() {
3 const char *a = "Hello world";
4 std::cout << a << std::endl;
5 return 0;
6 }
(gdb) run
Starting program: ./hello
Hello world
(gdb) w

Once you have a
program loaded in

memory:
You can list it.
You can run it.

22

Debuggers: breakpoints

(gdb) list
1 #include <iostream>
2 int main() {
3 const char *a = "Hello world";
...
(gdb) break main
Breakpoint 1 at 0x8b4: file hello.cc, line 3.
(gdb) b hello.cc:3
Note: breakpoint 1 also set at pc 0x8b4.
Breakpoint 2 at 0x8b4: file hello.cc, line 3.
(gdb) b *0x8b4
Note: breakpoints 1, and 2 also set at pc 0x8b4.
Breakpoint 3 at 0x8b4: file hello.cc, line 3.

It is also possible to
tell GDB to stop

whenever a certain
line, function or

address is reached.
This is done via a so
called breakpoint.
You can break on

functions, line
numbers, addresses

in memory.

23

http://hello.cc

Debuggers: how the CPU works

int square(int num) {
 return num * num;
}

(gdb) disass /r square
Dump of assembler code for function _Z6squarei:
 0x900 <+0>: 0f af ff imul %edi,%edi
 0x903 <+3>: 89 f8 mov %edi,%eax
 0x905 <+5>: c3 retq

What compilers do is to translate C++
code to so called "machine code",
simple instructions encoded as
sequences of bytes.

The CPU steps through this sequence
of bytes. The pointer to the current
instruction is called program
counter (pc) and its held in a special
CPU register.

24

Debuggers: stepping through your code

(gdb) break main
Breakpoint 1 at 0x8b4: file hello.cc, line 3.
(gdb) run
Starting program: ./hello hello

Breakpoint 1, main () at hello.cc:3
3 const char *a = "Hello world";
(gdb) print a
$2 = 0x0
(gdb) info locals
a = 0x0

Once your program
hits a break point

you can print out the
contents of the

current variables
either via print or

via info locals

25

Debuggers: stepping through your code

Breakpoint 1, main () at hello.cc:3
3 const char *a = "Hello world";
(gdb) p a
$2 = 0x0
(gdb) next
4 std::cout << a << std::endl;
(gdb) p a
$1 = 0x400a24 "Hello world"

...or you can go to
the next source line

via next. Your
variables will be

updated accordingly.

26

Preliminaries: the stack

Each program has an area of memory which is used to store variables
which are local to a given function. This area is generally known as
stack.

int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

Bottom of the stack

Top of the stack
pu

sh
→

pop
→

27

Preliminaries: the stack

Every time a function is called some information to allow handling the
call can* be saved on the stack, forming a so called stack-frame.

int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;
int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;

*: what actually ends up on the stack is a complicated
matter as it is architecture specific and moreover the
compiler can do a number of specific optimizations. 28

Preliminaries: the stack

int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;
int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;
int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;

g(int w) {
 int product w2 = w*w;
 return w2;
}

f(int x, int y, int z) {
 int sum = x + y + z;
 return g(sum);
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

parameters for g()

return address

int w2

Nested functions add one on top of the other in what is called a
callstack.

29

Preliminaries: the stack

int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;
int main (…) {
 int a;
 int b;
 int c;
}

int a

int b

int c

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;

eventual parameters for f()

f(int x, int y, int z) {
 int sum = x + y + z;
 return sum;
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

return address

int sum;

g(int w) {
 int product w2 = w*w;
 return w2;
}

f(int x, int y, int z) {
 int sum = x + y + z;
 return g(sum);
}

int main (…) {
 int a;
 int b;
 int c;
 f(a, b, c);
}

parameters for g()

return address

int w2

Whenever a function returns, the frame gets "pop-ed" from the stack.

30

Debugging through function calls

hexagon-5:~> cat << \EOF > pita.cc
include <cmath>
int square (int x) {
 return x * x;
}

int hyp(int a, int b) {
 return sqrt(square(a) + square(b));
}

int main(int argc, char ** argv) {
 hyp(3,4);
}
EOF
hexagon-5:~> c++ -g -o pita pita.cc

Let's now consider a program
with a few function calls. Lets
call it pita.cc and compile it as
usual, adding the -g option.

31

http://pita.cc

Debugging through function calls

(gdb) list
2 int square (int x) {
3 return x * x;
4 }
5
6 int hyp(int a, int b) {
7 return sqrt(square(a) + square(b));
8 }
9
10 int main(int argc, char ** argv) {
11 hyp(3,4);
12 }
(gdb) break main
(gdb) r
Breakpoint 1, main (argc=1, argv=0x348) at pita.cc:11
11 hyp(3,4);

Let's set a breakpoint
on main and run the

program until it stops at
line 11. What happens if

we now do next?

32

Debugging through function calls

(gdb) list
2 int square (int x) {
3 return x * x;
4 }
5
6 int hyp(int a, int b) {
7 return sqrt(square(a) + square(b));
8 }
9
10 int main(int argc, char ** argv) {
11 hyp(3,4);
12 }
(gdb) break main
(gdb) r
Breakpoint 1, main (argc=1, argv=0x348) at pita.cc:11
11 hyp(3,4);
(gdb) next
12 }

We execute the line, but
we are unable to see

what "hyp" actually does
ending up on the
subsequent line.

33

Debugging through function calls

(gdb) break main
(gdb) r
Breakpoint 1, main (argc=1, argv=0x348) at pita.cc:11
11 hyp(3,4);
(gdb) step
hyp (a=3, b=4) at pita.cc:7
7 return sqrt(square(a) + square(b));
(gdb) step
square (x=3) at pita.cc:3
3 return x * x;

If we really wanted to see
inside hyp we should

have use step.

34

Debugging through function calls

(gdb) break main
(gdb) r
Breakpoint 1, main (argc=1, argv=0x348) at pita.cc:11
11 hyp(3,4);
(gdb) step
hyp (a=3, b=4) at pita.cc:7
7 return sqrt(square(a) + square(b));
(gdb) step
square (x=3) at pita.cc:3
3 return x * x;

If we really wanted to see
inside hyp we should

have use step.

35

Debugging through function calls

(gdb) disass /m main
Dump of assembler code for function main(int, char**):
10 int main(int argc, char ** argv) {
 0x6c0 <+0>: push %rbp
 0x6c1 <+1>: mov %rsp,%rbp
 0x6c4 <+4>: sub $0x10,%rsp
 0x6c8 <+8>: mov %edi,-0x4(%rbp)
 0x6cb <+11>: mov %rsi,-0x10(%rbp)

11 hyp(3,4);
 0x6cf <+15>: mov $0x4,%esi
 0x6d4 <+20>: mov $0x3,%edi
 0x6d9 <+25>: callq 0x40065c <hyp(int, int)>
 0x6de <+30>: mov $0x0,%eax

12 }
 0x6e3 <+35>: leaveq
 0x6e4 <+36>: retq

Each line of C++
corresponds to one or
more instructions. You

can even tell the
compiler to advance

single instructions at the
time via stepi and

nexti.

36

Debugging through function calls

(gdb) step
square (x=3) at pita.cc:3
3 return x * x;
(gdb) finish
Run till exit from #0 square(x=3) at pita.cc:3
0x67d in hyp (a=3, b=4) at pita.cc:7
7 return sqrt(square(a) + square(b));
Value returned is $1 = 9
(gdb) continue

If you do not want to do
single step / next you can
use finish, which will

bring you until the end of
the current function

frame, or you can use
continue to go until
the next breakpoint (if

any)

37

Debugging through function calls

(gdb) step
square (x=3) at pita.cc:3
3 return x * x;
(gdb) where
#0 square (x=3) at pita.cc:3
#1 0x673 in hyp (a=3, b=4) at pita.cc:7
#2 0x6de in main (argc=1, argv=0x348) at pita.cc:11

Sometimes you want to
break in the middle of a
program, and you want
to know what chain of

calls was taken. The
backtrace command

takes care of that.

38

Repeating commands

int main(int argc, char **argv) {
 int sum = 0;
 for (int i = 0; i < 1000; ++i)
 sum += i;
}

Given the following program:

Use gdb to find out the value of the first 500 iterations.

39

For the Gauss among you...

(gdb) print 499 * 250
$1 = 124750

40

Naive approach, repeating commands

(gdb) break 4
Breakpoint 1 at 0x5f8: file sum.cc, line 4.
(gdb) run
Breakpoint 1, main (...) at sum.cc:3
3 for (int i = 0; i < 1000; ++i)
(gdb) c
Continuing.

Breakpoint 1, main (argc=1, argv=0x348) at sum.cc:4
4 sum += i;
(gdb)
Continuing.

Breakpoint 1, main (argc=1, argv=0x348) at sum.cc:4
4 sum += i;
(gdb)
...497 more times...
(gdb) print sum
$1 = 124750

Of course nothing
prevents you from

continuing 500 times and
then check the results. If
you simply press enter

gdb will repeat the
previous command.

41

Naive approach, repeating commands

(gdb) break 4
Breakpoint 1 at 0x5f8: file sum.cc, line 4.
(gdb) run
Breakpoint 1, main (...) at sum.cc:3
3 for (int i = 0; i < 1000; ++i)
(gdb) c 500

For certain commands
(continue, step,

next, stepi, nexti)
you can actually specify

the number of
repetitions for that

command as an
argument

42

Watchpoints

(gdb) break 3
Breakpoint 1 at 0x5ee: file sum.cc, line 3.
(gdb) run
Breakpoint 1, main (...) at sum.cc:3
3 for (int i = 0; i < 1000; ++i)
(gdb) watch i == 500
Hardware watchpoint 2: i == 500
(gdb) continue
Continuing.
Hardware watchpoint 2: i == 500

Old value = false
New value = true
0x602 in main (...) at sum.cc:3
3 for (int i = 0; i < 1000; ++i)
(gdb) print
$1 = 124750

It is also possible to
watch for changes of

values of given variables.

43

Breakpoint / watchpoint commands

(gdb) break 4
Breakpoint 1 at 0x5ee: file sum.cc, line 4.
(gdb) command 1
> printf "sum 0..%i = %i\n", i, sum
> continue
> end
(gdb) r

It is also possible to
define a command to be
executed whenever a

breakpoint / watchpoint
is reached.

44

Breakpoint / watchpoint commands

(gdb) r
Breakpoint 1, main (...) at sum.cc:4
4 sum += i;
sum 0..0 = 0

Breakpoint 1, main (...) at sum.cc:4
4 sum += i;
sum 0..1 = 0

Breakpoint 1, main (...) at sum.cc:4
4 sum += i;
sum 0..2 = 1

Breakpoint 1, main (...) at sum.cc:4
4 sum += i;
sum 0..3 = 3

Notice however that the
a breakpoint stops
before the line is

executed. If that's not
what you want you

should add next in you
command.

45

Summary

Inspection:

• print

• printf

• bracktrace

• info locals

• help info (with all its variants)

Breakpoints:

• break

• watch

• disable

• command

Navigation:

• run

• next

• nexti

• step

• stepi

• finish

• continue

46

Graphics Toolkits

Key Factor #1: Correctness
VALGRIND...

One of the most valuable tools to verify correctness of any memory related
operations. It will save you hours of work.

It’s not a toy – it’s one of the most useful software developer tools I have ever
used. Always verify your regression test suite under Valgrind; if nothing is
flagged there’s reasonable chance there are no silent memory access problems.

Any time you run into a problem, and certainly if you have a memory fault such
as a segmentation violation, run the program under Valgrind.

It will also provide useful memory leak data. It’s very slow just for that however.

... and friends

The same suite has other tremendously useful associated tools.

HELGRIND for finding multi-threaded data races, MASSIF for generating run
time heap snapshot profiles and CACHEGRIND for CPU simulation.

47

Running Valgrind

Running under Valgrind is as easy as prefixing the command line you
want to check with the valgrind wrapper.

48

:~> cat <<\EOF >broken.cc
void broken() {
 int *foo = new int[10];
 foo[10] = 1;
}
int main() {
 broken();
}
EOF
:~> c++ -g -o broken -g broken.cc
:~> valgrind ./broken

http://broken.cc

49

==10910== Memcheck, a memory error detector
==10910== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==10910== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==10910== Command: ./broken
==10910==
==10910== Invalid write of size 4
==10910== at 0x40066A: broken() (broken.cc:3)
==10910== by 0x40067A: main (broken.cc:6)
==10910== Address 0x5943068 is 0 bytes after a block of size 40 alloc'd
==10910== at 0x4C2A939: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-
amd64-linux.so)
==10910== by 0x40065D: broken() (broken.cc:2)
==10910== by 0x40067A: main (broken.cc:6)
==10910==
==10910==
==10910== HEAP SUMMARY:
==10910== in use at exit: 40 bytes in 1 blocks
==10910== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==10910==
==10910== LEAK SUMMARY:
==10910== definitely lost: 40 bytes in 1 blocks
==10910== indirectly lost: 0 bytes in 0 blocks
==10910== possibly lost: 0 bytes in 0 blocks
==10910== still reachable: 0 bytes in 0 blocks
==10910== suppressed: 0 bytes in 0 blocks
==10910== Rerun with --leak-check=full to see details of leaked memory
==10910==
==10910== For counts of detected and suppressed errors, rerun with: -v
==10910== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

This is what the
output looks like...

50

==10910== Memcheck, a memory error detector
==10910== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==10910== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==10910== Command: ./broken
==10910==
==10910== Invalid write of size 4
==10910== at 0x40066A: broken() (broken.cc:3)
==10910== by 0x40067A: main (broken.cc:6)
==10910== Address 0x5943068 is 0 bytes after a block of size 40 alloc'd
==10910== at 0x4C2A939: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-
amd64-linux.so)
==10910== by 0x40065D: broken() (broken.cc:2)
==10910== by 0x40067A: main (broken.cc:6)
==10910==
==10910==
==10910== HEAP SUMMARY:
==10910== in use at exit: 40 bytes in 1 blocks
==10910== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==10910==
==10910== LEAK SUMMARY:
==10910== definitely lost: 40 bytes in 1 blocks
==10910== indirectly lost: 0 bytes in 0 blocks
==10910== possibly lost: 0 bytes in 0 blocks
==10910== still reachable: 0 bytes in 0 blocks
==10910== suppressed: 0 bytes in 0 blocks
==10910== Rerun with --leak-check=full to see details of leaked memory
==10910==
==10910== For counts of detected and suppressed errors, rerun with: -v
==10910== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

Each error is
represented as a

section like the one in
yellow. Of course

there can be multiple
errors being shown,
however by default
repeated errors will
not be shown after a

given threshold.

51

==10910== Memcheck, a memory error detector
==10910== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==10910== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==10910== Command: ./broken
==10910==
==10910== Invalid write of size 4
==10910== at 0x40066A: broken() (broken.cc:3)
==10910== by 0x40067A: main (broken.cc:6)
==10910== Address 0x5943068 is 0 bytes after a block of size 40 alloc'd
==10910== at 0x4C2A939: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-
amd64-linux.so)
==10910== by 0x40065D: broken() (broken.cc:2)
==10910== by 0x40067A: main (broken.cc:6)
==10910==
==10910==
==10910== HEAP SUMMARY:
==10910== in use at exit: 40 bytes in 1 blocks
==10910== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==10910==
==10910== LEAK SUMMARY:
==10910== definitely lost: 40 bytes in 1 blocks
==10910== indirectly lost: 0 bytes in 0 blocks
==10910== possibly lost: 0 bytes in 0 blocks
==10910== still reachable: 0 bytes in 0 blocks
==10910== suppressed: 0 bytes in 0 blocks
==10910== Rerun with --leak-check=full to see details of leaked memory
==10910==
==10910== For counts of detected and suppressed errors, rerun with: -v
==10910== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

At the top we find the
kind of error, and the

stack trace of what
triggered the error.

52

==10910== Memcheck, a memory error detector
==10910== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==10910== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==10910== Command: ./broken
==10910==
==10910== Invalid write of size 4
==10910== at 0x40066A: broken() (broken.cc:3)
==10910== by 0x40067A: main (broken.cc:6)
==10910== Address 0x5943068 is 0 bytes after a block of size 40 alloc'd
==10910== at 0x4C2A939: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-
amd64-linux.so)
==10910== by 0x40065D: broken() (broken.cc:2)
==10910== by 0x40067A: main (broken.cc:6)
==10910==
==10910==
==10910== HEAP SUMMARY:
==10910== in use at exit: 40 bytes in 1 blocks
==10910== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==10910==
==10910== LEAK SUMMARY:
==10910== definitely lost: 40 bytes in 1 blocks
==10910== indirectly lost: 0 bytes in 0 blocks
==10910== possibly lost: 0 bytes in 0 blocks
==10910== still reachable: 0 bytes in 0 blocks
==10910== suppressed: 0 bytes in 0 blocks
==10910== Rerun with --leak-check=full to see details of leaked memory
==10910==
==10910== For counts of detected and suppressed errors, rerun with: -v
==10910== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

Below you find the
probable allocation

which is related to the
issue itself.

53

==10910== Memcheck, a memory error detector
==10910== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==10910== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==10910== Command: ./broken
==10910==
==10910== Invalid write of size 4
==10910== at 0x40066A: broken() (broken.cc:3)
==10910== by 0x40067A: main (broken.cc:6)
==10910== Address 0x5943068 is 0 bytes after a block of size 40 alloc'd
==10910== at 0x4C2A939: operator new[](unsigned long) (in /usr/lib64/valgrind/vgpreload_memcheck-
amd64-linux.so)
==10910== by 0x40065D: broken() (broken.cc:2)
==10910== by 0x40067A: main (broken.cc:6)
==10910==
==10910==
==10910== HEAP SUMMARY:
==10910== in use at exit: 40 bytes in 1 blocks
==10910== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==10910==
==10910== LEAK SUMMARY:
==10910== definitely lost: 40 bytes in 1 blocks
==10910== indirectly lost: 0 bytes in 0 blocks
==10910== possibly lost: 0 bytes in 0 blocks
==10910== still reachable: 0 bytes in 0 blocks
==10910== suppressed: 0 bytes in 0 blocks
==10910== Rerun with --leak-check=full to see details of leaked memory
==10910==
==10910== For counts of detected and suppressed errors, rerun with: -v
==10910== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

At the bottom you
find a summary of the

memory related
errors.

54

:~> valgrind --leak-check=full ./broken
...
...
...
==15025== HEAP SUMMARY:
==15025== in use at exit: 40 bytes in 1 blocks
==15025== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==15025==
==15025== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==15025== at 0x939: operator new[](unsigned long) (in ...)
==15025== by 0x65D: broken() (broken.cc:2)
==15025== by 0x67A: main (broken.cc:6)

You can also run
a more in depth

check of
memory leaks by

providing
--leak-check=full

when running

http://broken.cc

Key factor #1: tools to enforce correctness

Address Sanitizer

When recompiling buggy code is an option, some compilers (like GCC and Clang) allow
to add extra runtime instrumentation which will catch errors that can elude also
Valgrind checks.

Clang Static Analizer

Due to C / C++ being very "liberal" languages, compilers do not flag bad practices even
if they are usually not correct. At the cost of false positives, Static Analyzers (like
clang-static-analyser) can detect possibly fatal bad behaviours.

strace, LD_DEBUG, /proc/<pid>

There is a number of system features / tools which can be extremely helpful when
debugging memory problems. If none of the above ring a bell, make sure you google
for them and become familiar.

55

Address Sanitizer

Not all errors can be caught by valgrind. Stack overflows are
particularly difficult to trap:

void broken() {
 int foo[10];
 int b;

 foo[10] = 1;
}

int main() {
 broken();
}

56

57

==2196== Command: ./broken-AS
--2196-- run: /usr/bin/dsymutil "./broken-AS"
warning: no debug symbols in executable (-arch x86_64)
==2196==
==2196== Process terminating with default action of signal 6 (SIGABRT)
==2196== at 0x7FFF5FC17C90: ImageLoaderMachOCompressed::trieWalk(unsigned char const*, unsigned char const*,
char const*) (in /usr/lib/dyld)
==2196== by 0x7FFF5FC17DA1: ImageLoaderMachOCompressed::findExportedSymbol(char const*, ImageLoader const**)
const (in /usr/lib/dyld)
==2196== by 0x7FFF5FC1218A: ImageLoaderMachO::findExportedSymbol(char const*, bool, ImageLoader const**) const
(in /usr/lib/dyld)
==2196== by 0x7FFF5FC184F5: ImageLoaderMachOCompressed::resolveTwolevel(ImageLoader::LinkContext const&,
ImageLoader const*, bool, char const*, bool, ImageLoader const**) (in /usr/lib/dyld)
==2196== by 0x7FFF5FC18783: ImageLoaderMachOCompressed::resolve(ImageLoader::LinkContext const&, char const*,
unsigned char, long, ImageLoader const**, ImageLoaderMachOCompressed::LastLookup*, bool) (in /usr/lib/dyld)
==2196== by 0x09A: ImageLoaderMachOCompressed::doBindFastLazySymbol(unsigned int, ImageLoader::LinkContext
const&, void (*)(), void (*)()) (in /usr/lib/dyld)
==2196== by 0x24D: dyld::fastBindLazySymbol(...) (in...)
==2196== by 0x3B9: dyld_stub_binder (...)
==2196== by 0x10021F117: ??? (...)
==2196== by 0x1001C1D25: usleep$NOCANCEL (...)
==2196== by 0x1001EFA5C: __abort (...)
==2196== by 0x1001F0330: __stack_chk_fail (...)
[1] 2196 abort valgrind ./broken-AS

Valgrind complains
about something, but
cannot tell what (on
my mac, Linux on

linux is even worse).

Address Sanitizer

58

:~> c++ -fsanitize=address -o broken-AS broken-AS.cc
:~> ./broken-AS

===
==2391==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x348 at pc 0xe7b bp 0x2f0 sp 0x2e8
WRITE of size 4 at 0x348 thread T0
 #0 0xe7a in broken() (/Users/ktf/./broken-AS+0xe7a)
 #1 0xf08 in main (/Users/ktf/./broken-AS+0xf08)
 #2 0x5c8 in start (/usr/lib/system/libdyld.dylib+0x5c8)
 #3 0x0 (<unknown module>)

Address 0x348 is located in stack of thread T0 at offset 72 in frame
 #0 0x106777d5f in broken() (/Users/ktf/./broken-AS+0xd5f)

 This frame has 1 object(s):
 [32, 72) 'foo' <== Memory access at offset 72 overflows this variable

Address Sanitiser works much better for these kind of issues, but lacks (by design)
many of the features of the former. It also requires recompilation with a special

option which will reduce performance.

Address Sanitizer

Graphics Toolkits

Profilers
Profilers are tools which allow you to monitor where your
application is spending CPU cycles (so called performance profilers)
and which resources it is holding (e.g. memory ranges resulting from
an allocation).

There is a number of them, each one target at different usecases and
with its own tradeoffs.

Some common names:

• Google Perf Tools (memory and performance)

• Linux perf (performance only)

• Instruments (OSX specific)

• Kcachegrind (part of the Valgrind suite)

• IgProf (which I modestly maintain and contributed to)
59

Instrumentation

int sqrt(int a) {
 int i = 0;
 while(i++ > 0)
 if (i*i >= a)
 return i;
 return 0;
}

int square(int a) {
 return a*a;
}

int sum(int a, int b) {
 return a+b;
}

int hyp(int a, int b) {
 return sum(square(a), square(b));
}

60

Instrumentation

int sqrt(int a) {
 int i = 0;
 while(i++ > 0)
 if (i*i >= a)
 return i;
 return 0;
}

int square(int a) {
 return a*a;
}

int sum(int a, int b) {
 return a+b;
}

int hyp(int a, int b) {
 return sum(square(a), square(b));
}

int hyp(int a, int b) {
 instrumentationStart()
 return sum(square(a), square(b));
 instrumentationStop()
}

Find out where you are
(backtrace!)

Start the timer for this particular
function.

Go back to the function

Find out where you are
(backtrace!)

Stop the timer and add it to the
counter for this backtrace

Stop the timer and add it to the
counter for this backtrace

Go back

61

Instrumentation

int sqrt(int a) {
 int i = 0;
 while(i++ > 0)
 if (i*i >= a)
 return i;
 return 0;
}

int square(int a) {
 return a*a;
}

int sum(int a, int b) {
 return a+b;
}

int hyp(int a, int b) {
 return sum(square(a), square(b));
}

int hyp(int a, int b) {
 instrumentationStart()
 return sum(square(a), square(b));
 instrumentationStop()
}

Find out where you are
(backtrace!)

Start the timer for this particular
function.

Go back to the function

Find out where you are
(backtrace!)

Stop the timer and add it to the
counter for this backtrace

Stop the timer and add it to the
counter for this backtrace

Go back

62

Instrumentation overhead

This approach has the disadvantage that it can have a large overhead.

5ns

12ns

83ns

Ti
m

e
us

ed

sum prod sqrt overhead

147ns

63

Sampling profilers

5m

12m

83m

147m
Ti

m
e

us
ed

sum prod sqrt overhead

In practice our programs have a repetitive behaviour that lasts very long
64

So if we sample periodically every few milliseconds what is being run by the CPU
we still converge to the same time distribution while amortizing the overhead.

Sampling

5%

12%

83%

37ns*100m/0.001s
=> 0.2s => ~0.1%

Ti
m

e
us

ed

sum prod sqrt overhead

65

Memory profilers

The instrumentation mechanism is however very handy to collect information from
smaller subsets of function, for example you can track memory usage by instrumenting
malloc / free and related functions.

66

void f(void) {

 char * foo= new char[10];

 delete [] foo;

}

Find out where you are
(backtrace!)

Keep track for the allocation for
this particular backtrace.

Go back to the function

Find out where you are
(backtrace!)

Track the fact that the allocation
was freed

Go back

Graphics Toolkits

Profilers

IgProf
The IgProf profiling suite is complimentary to the Valgrind Family.

IgProf can profile memory allocations, and can report the full stack
trace for every allocated memory block. It’s particularly useful for
detecting leaks, generating run-time heap snapshots, and
generally tracking memory use.

Recommended use: check correctness with Valgrind, then use IgProf
to create heap profiles, in particular to identify leaks. IgProf has
much less overhead than Valgrind (50-100% vs 1000%), but assumes
correctness.

67

Graphics Toolkits

Key Factor #1: Memory Leaks

Unreachable but still allocated:
Unreachable memory is created by forgetting to free data past last
reference. In C++ it is usually a sign of fairly poor object ownership
design – see talloc for ideas.

Accumulated reachable garbage
Accumulated garbage happens when object lifetime extends long
beyond the time the object is needed. Fattens virtual memory use and
slows apps down.

68

Graphics Toolkits

Combating Memory Leaks
#1: Design clear object ownership

It won’t just happen! The most common reason for leaks is developers don’t
know who owns the object or how long it will be live. Most likely to happen at API
boundaries. Design clear ownership rules; see for example talloc library. [Causes
knock-on issues: developers copy objects when they don’t know who owns them.]

#2: Use RAII idiom where possible

Resource Acquisition Is Initialisation. The owner object will release resources
when destructed. Numerous idioms. A) Prefer memory pools when you can
define en-masse clear ownership; B) Use by-value containers – std::string,
std::vector; C) Use reference counting smart pointers – std::auto_ptr,
boost::intrusive_ptr, boost::shared_ptr; good for internal use, be cautious of using
them in APIs: prefer #1 over #2.

#3: Proactively verify correctness using leak detection tools
69

E x e rc i s e  
C a t c h i n g M e m o r y E r r o r s

70

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest

matters.

#2: Memory overhead, alignment & churn matter.
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time

in the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory

wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

71

Know your enemies: simple types

The first thing to do when dealing with memory is to know the size of the
objects you are dealing with.

72

1 bit

char

short

int

long

T *

Know your enemies: simple types

Bits are not actually addressable, hence a single bit, standalone still
occupies one byte.

73

1 bit

char

short

int

long

T *

Know your enemies: simple types

In order to profit from using single bits to store information you need to
pack 8 of them.

74

1 bit

char

int

long

T *

short

8 bits

Know your enemies: simple types

This is a first (simple) example on how "on paper" behaviour and
hardware actually can be different.

75

1 bit

char

int

long

T *

short

8 bits

Know your enemies: padding

How much memory is occupied by the following struct?

struct A {
char a;
int b;
char c;

};

a. 6 bytes

b. 8 bytes

c. 12 bytes

d. 16 bytes

?

76

Know your enemies: padding

6 bytes come from the actual member sizes.

struct A {
char a;
int b;
char c;

};

77

Using GDB to inspect variables

int main () {
struct A {
char a;
int b;
char c;

} a;
}

gdb ./a.out
(gdb) p sizeof(A)
$1 = 12
(gdb) p sizeof(a)
$2 = 12

78

Another 6 bytes come from the required padding.

Know your enemies: padding

Wasted bytes

Wasted bytes

struct A {
char a;
int b;
char c;

};

79

Know your enemies: padding

A much better layout...

Only two bytes wasted

By default, C / C++ imposes alignment of data members
within a struct / class to their size.

struct A {
int b;
char a;
char c;

};

80

Know your enemies: padding

End of the story?

How much memory is used by the above construct?

struct A {
int b;
char a;
char c;

};

A *a = new A;

81

Know your enemies: padding

End of the story?

Whenever dealing with small structures always think about the overhead introduced
by the required book-keeping!

struct A {
int b;
char a;
char c;

};

A *a = new A;

8 bytes for the
data itself

~ 1 6 e x t ra by t e s f o r
a l i g n m e n t o f t h e
structure on the heap and
extra heap book-keeping.

8 b y t e s
pointer to the
object

82

Graphics Toolkits

C, C++ Run Time Memory Management
 
C/POSIX provides some very basic memory allocation primitives

malloc(); free(); realloc(); calloc(); memalign(); valloc(); alloca()

Various libraries provide alternatives, or higher-level managers

Some of the best alternatives: Google TCMalloc, FreeBSD jemalloc; 
Managers: Boost Pool, Sun SLAB allocator + derivatives, SAMBA talloc,
GNU obstacks

C++ provides partially incompatible allocation technology

operator new/delete; object constructors, destructors and copy
constructors; standard library containers and allocator objects; smart
pointers, etc.; does map easily on top of malloc + free, somewhat
painfully on anything else

83

"C++: the power and elegance of a hand grenade"

STL containers are great implementations of abstract concepts, but
they come with a cost. Knowing that cost is key to be able to use
them efficiently.

84

Know your enemies: std::vector

std::vector<T>: a compact, variable size, collection of objects of
type T.

T* front
T* back
T* capacity

T

T

T

spare space
std::vector has an overhead of
3 pointers per container, plus

the malloc overhead.

85

Know your enemies: std::vector

T* front

T* back
T* capacity

T

T

T

spare space

A good and efficient data
structure in general.
Good locality usually, guaranteed
contiguous allocation.

Avoid small vectors because of the
overhead.

B e w a r e c r e a t i n g v e c t o r s
incrementally without reserve().
Grows exponentially and copies old
contents on every growth step if there
isn’t enough space!

Beware making a copy , i f the
dynamically allocated part is copied!

Beware using erase(), it also causes
incremental copying.

86

Know your enemies: std::string

std::string s("foo");

len
capacity
refcount

F O O \0

Strings are highly overrated and are most likely to point to bad
design choices in your code. While they do have a use and can
have smart(er) implementations, in general you should think
twice if you really need their dynamic behaviour or if what
you want is really a constant string literal.

char *s[] = "foo";

F O O \0

87

Know your enemies: std::vector<uint16_t>

Typical std::vector<uint16_t> overhead is 40 bytes [64-bit system].

– 3 pointers × 8 bytes for vector itself, plus average 2 words × 8 bytes malloc()
overhead for the dynamically allocated array data chunk.

– So, if x always has N ≤ 19 elements, it’d better to just use a
std::array<uint16_t,N> x.

–More generally, if 95+% of uses of x have only N elements for some small N, it
may be better to have a uint16_t x[N] for the common case, and a separate
dynamically allocated “overflow” buffer for the rare N = large case. Somewhat
more complex code may be offset by reduction in overheads – measure to see!

–Even more generally, this applies to any small object allocated from heap.
Examples abound in almost any large code base – at one point our software
made many heap copies of 1-byte strings (yes, just the trailing null byte).

88

Usually implemented as a doubly linked list. Usually, overhead of at
least 2 pointers per item (implementation dependent).

Here the cost is per item, not per container.

Moreover there is no guarantee that the objects will be close in memory
potentially adding pressure to the memory subsystem.

Know your enemies: std::list

T T

next* previous*

T T

next* previous*

89

Know your enemies: std::map<K,V>

Maps are another extremely abused container, mostly because of their
"intuitive" behaviour.

Platonic world

90

Know your enemies: std::map<K,V>

Maps are another extremely abused container, mostly because of their
"intuitive" behaviour.

Platonic world

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

Reality: Balanced Binary 
Tree, e.g. Red-Black

K = key, V = value, C = color, L = left, R = right 91

Graphics Toolkits

 std::map<K, V>

Maps are "pointer-fest"

Each tree node is a separately allocated [R/B, LeftPtr, RightPtr, Key, Value]
tuple. Key comparison determines whether to follow left or right pointer.
The recursive pointer chasing is poison to modern CPUs if data is not
in cache.

Avoid large maps and use inexpensive keys

Since the map is a balanced binary tree, it has log2(size) levels. If you have
1M entries in the map, it will take up to 20 key comparisons to find a
match. If each key is a container such as std::string, every key comparison
involves another pointer dereference, then key data match – for 1M
entries, up to 40 pointer dereferences and up to 20 key comparisons
before you get to data. If you fill the map slowly, the tree nodes and key
and value data can be scattered all over virtual address space.

13

8 17

1 25

6 22

NILNIL

27

NILNIL

15

NILNIL

11

NILNILNIL

NILNIL

[Wikipedia /
GFDL]

92

Graphics Toolkits

Memory Churn
Memory churn is excessive reliance on dynamic heap allocation,
usually in the form of numerous very short-lived allocations.

Memory churn has several highly undesirable side effects.

Time is spent in memory management, not in your algorithms. We’ve
seen up to 40% in malloc()+free(); 10%+ is a strong sign of bad problems.

Tends to cause poor heap locality and to increase heap
fragmentation. Churn on large allocations can cause frequent, costly
page table updates.

Contaminates I, D and TLB caches with memory management code
and data structures. CPU performance counter profiling less useful
because the caches will seem to perform extremely well – they just
contain the wrong data.

If you do not use C++11, do yourself a favour and switch to it.
93

Graphics Toolkits

Object Life Cycle Management
Object life cycle management defines who is responsible
for allocation, creation and destruction of objects.

The API specifies where objects are created, who owns and frees them,
and when. It may also specify hooks for memory allocation allowing
client to decide where memory gets allocated.

One policy is to take standard library like objects. It implies memory
allocation is hard-wired to types, and copies happen frequently, and 
as such is a very significant design choice.

Opt-in approach to life cycle management doesn’t work.
The APIs define the object management policy. You cannot avoid this by
ignoring it; you’ll just make your clients confused and guess (wrong).

Changing life cycle policy usually implies API + library
rewrite.

94

Graphics Toolkits

std::vector<std::vector<std::vector<int>>>

A very common mistake. C++ vectors of vectors are expensive, and not contiguous
matrices. Let’s measure just how lethal this nested containment by value combined with
incremental growth is.

–Naively: 111 allocations, 6’640 bytes (64-bit; proper use of reserve() gets this.)
–Reality (C++98): 870 allocations, total 36’184 bytes alloc’d, 7’168 at end, 12’096 peak.
–Reality (C++11): 555 allocations, total 20'584 bytes alloc’d, 7’168 at end, 11'040 peak.
– +400% # allocs, +210% bytes alloc’d, 66% working and 8% residual overhead!
–Versus 1 allocation, 4’880 bytes and some pointer setup had we used a real matrix

(or 1 allocation and 4000 bytes, had we used a linear array).

typedef std::vector<int> VI; 
typedef std::vector<VI> VVI; 
std::vector<VVI> vvvi; 
for (int i = 0, j, k; i < 10; ++i) 
 for (vvvi.push_back(VVI()), j = 0; j < 10; ++j) 
 for (vvvi.back().push_back(VI()), k = 0; k < 10; ++k) 
 vvvi.back().back().push_back(k);

95

Graphics Toolkits

std::vector<std::vector<std::vector<int>>>
std::vector<VVI> vvvi, vvvi2; 
for (/* ... */) { /* ... */ } 
vvvi2 = vvvi;

Why you should avoid making container copies by value…

– +111 allocations, +6’640 bytes (= naïve / full reserve() allocation).

–An allocation storm is inevitable if you copy nested containers
by value. Evil bonus: fragmentation. Because of the allocation/free
pattern, by-value copies are an effective way to scatter the memory
blocks all over the heap.

– “A nested container” does not have to be a standard library container.
It can refer to any object type which makes an expensive deep copy –
for instance almost any normal type with std::string, std::vector or
std::map data members, or objects which “clone” pointed-to objects on
copy.

–The simple “=“ line may also generate lots of code. 96

Graphics Toolkits

Getting Hands Dirty: C++ Types

Allocator template argument

All C++ standard containers take an allocator template argument.

–Usually by default the containers just grab memory with operator new when they need
something. This can lead to highly inefficient memory layouts.

–We are meant to use the template argument and constructor parameter to specify an
alternate allocator, such as a pool allocator to improve locality. Pointer-rich containers
(maps, lists) do need pool allocators for performance.

–Do be advised this is even more invasive decision than starting to use slabs, obstacks,
talloc, or purpose-built arenas – it affects the type. In general the decision needs to be
made early on, retrofitting custom allocators into a large code base is a significant
effort.

Custom "plug-in" allocators

Finally, there is a number of "plug-in" allocators, like jemalloc or TCmalloc, which
might enormously improve the performance of your application under certain specific
conditions, e.g. in a highly multithreaded environment. Noticeable gains can be
obtained by using them, however make sure you profile their performance and that
you keep looking at the improvements done in the standard allocator.

97

Graphics Toolkits

Combating Memory Churn
Rewarding. Eliminating churn tends to yield big gains – x10 is not unusual.

Unless the code suffers from even greater algorithmic flaws, memory churn tends to mask
any other properties, rendering other profiling ineffective.

Detecting memory churn is relatively easy: memory use profiling, such as IgProf
MEM_TOTAL stats, tends to flag the problems almost trivially.

Hard. Solving memory churn varies from trivial to very hard.
Easy to fix mistakes std::vector push_back()/erase(), containers defined inside of loops rather
than outside.

Modern compilers help a lot! With old compilers, passing / returning containers by value
was also an issue, nowadays, when using C++11 and C++14, thanks to move constructors,
one needs to try very hard to suffer from this.

Maybe caching, a std::vector (“poor man’s arena”), replacing local variable with a data
member, or a proper pool allocator will provide sufficient relief.

Next hardest are changes to specific common types, e.g. replacing small heap-allocated
matrix objects with compile-time sized array matrices.

By far the hardest is to address systematic poor design – code “thinks” too locally and you
have to touch tens to hundreds of thousands of lines of code to cut string use or introduce new
object ownership or pool / slab allocators.

98

Graphics Toolkits

C++ Hazards Wrap-Up
C++ standard library is very easy to program.

With judicious use easy to write high performance programs. With poor
judgement easy to make terrible mistakes which ruin the performance and
require total rewrite to regain it.

C++ standard library types in interface = life cycle policy.

Passing C++ standard library like types in API interfaces effectively means
segregating memory management to library. In practice library users will have
little ability to manage library memory use.

Avoid containers nested by value and string abuse.

There are legitimate uses, but this is almost always a mistake.

Containers are dynamic entities.

Make sure you understand what their dynamic behaviour implies. Prefer vectors
over maps and list. Prefer string constants over std::string where possible.

99

100

E x e rc i s e  
s td : : ve c to r m e m o r y u s e

101

E x e rc i s e  
s td : : s t r i n g m e m o r y u s e

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest

matters.

#2: Memory overhead, alignment & churn matter
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time

in the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory

wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

102

Memory hierarchy

Core

L3 Cache

Core Core Core

L2 Cache L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

2 - 8 cores per die, 1 - 2
dies per package,1-N
packages per system.
3 levels of cache
• Small [32kB] separate

L1 I+D  
caches for each core.

• Medium [256kB - 6MB]
combined L2 cache,
perhaps shared
among some cores.

• Large [4 - 20MB]
combined L3 cache
shared between all
cores on die.

• Can have even more
exotic setups,
especially when on
cpu GPU is present.

103

Memory hierarchy

RAM

CPU

Cache

Disk

Exchange
cache-lines:

64 bytes*, aligned.

Exchange pages: 4096
bytes**, aligned.

104
*: on most architectures

**: larger pages are available under certain cases

Graphics Toolkits

The Memory Wall
Average memory access time 
 = Hit time + Miss rate × Miss penalty.

I/D$: L1 hit = 2-3 clock cycles.
I/D$: L1 miss, L2 hit =~ 10-15 cycles.
TLB: L1 miss, L2 hit =~ 8-10 cycles.
TLB: L1 miss, L2 miss =~ 30+ cycles.
What happens when you drop to
memory?
Intel Netburst Xeon (Pentium-era)
memory latency was 400-700 clock
cycles depending on access pattern
and architecture.
AMD Opteron, Intel Core 2 and later
CPU memory latency is ~200 cycles
(times any NUMA overhead if crossing
interconnect).
Good cache efficiency matters.

105

Non-Uniform memory access

RAM

CPU

Cache

CPU

CPU CPU

RAM

CPU

Cache

CPU

CPU CPU
RAM

CPU

Cache

CPU

CPU CPU

RAM

CPU

Cache

CPU

CPU CPU

RAM is not necessarily local anymore

Interconnect

106

Graphics Toolkits

Hey wait, aren’t you going to talk about objects!?

Peak performance requires effective cache use for low latency.
How that is achieved is less important. Understanding the
language mapping from high-level constructs to low-level
behaviour helps.

With big data the answer tends to translate to hardware-aware and -friendly
Arrays of Structures (AoS) and Structures of Arrays (SoA) organisation,
e.g. partitioning problem so it fits in L1 cache, strides hardware can prefetch or
is vectorisation-friendly. Cache-defeating pointer chasing will simply not work.

Based on what we know of future processor roadmaps, the performance gap
between AoS/SoA and pointer chasing data structures will only stay or grow
bigger. If streaming units get prominent, code locality will also matter more.

Pointer-rich “proper objects” do remain immensely useful – as long as caches
are used very effectively, or performance simply doesn’t matter, for example in
GUIs, support data structures and rarely used infrastructure.

107

Array of Structures

std::vector< >
108

Structure of Array

struct {std::vector< >; std::vector< >; std::vector< >; std::vector< >;}
109

Graphics Toolkits

Why Structures of Arrays?
class X {  
 ...  
 vec3 pos_;  
 ...  
 float boost_;  
 ...  
 float dir_;  
 ...  
 void update(vec3 target)  
 { dir_ = dot3(pos_, target) * boost_; }  
};

110

Why Structures of Arrays?
class X {  
 ...  
 vec3 pos_;  
 ...  
 float boost_;  
 ...  
 float dir_;  
 ...  
 void update(vec3 target)  
 { dir_ = dot3(pos_, target) * boost_; }  
};

Graphics Toolkits

I - C a c h e
miss

111

Why Structures of Arrays?
class X {  
 ...  
 vec3 pos_;  
 ...  
 float boost_;  
 ...  
 float dir_;  
 ...  
 void update(vec3 target)  
 { dir_ = dot3(pos_, target) * boost_; }  
};

Graphics Toolkits

D - C a c h e
miss

112

Graphics Toolkits

Cache occupied
bu t no t used
here

Why Structures of Arrays?
class X {  
 ...  
 vec3 pos_;  
 ...  
 float boost_;  
 ...  
 float dir_;  
 ...  
 void update(vec3 target)  
 { dir_ = dot3(pos_, target) * boost_; }  
};

113

Graphics Toolkits

4 executions on 4 objects – how many cycles?

 
 void update(vec3 target)  
 { dir_ = dot3(pos_, target) * boost_; }  

math - 20
I$ miss - 200

D$ miss - 200 D$ miss - 200 D$ miss - 200

D$ miss - 200 D$ miss - 200 D$ miss - 200

D$ miss - 200 D$ miss - 200 D$ miss - 200

D$ miss - 200 D$ miss - 200 D$ miss - 200

114

Graphics Toolkits

Change Abstraction to SoA

 
 
 
 
 void update(float *dir, TargetData *data,  
 vec3 target, size_t count)  
 {  
 for (size_t i = 0; i < count; ++i)  
 dir[i] = dot3(data->pos[i], target) * data->boost[i];  
 }  

115

Same kind of data is grouped together,
maximizing data cache usage.

Graphics Toolkits

Minimal input dataUpdate an array

Loop over data Calculation mostly unchanged

Change Abstraction to SoA

 
 
 
 
 void update(float *dir, TargetData *data,  
 vec3 target, size_t count)  
 {  
 for (size_t i = 0; i < count; ++i)  
 dir[i] = dot3(data->pos[i], target) * data->boost[i];  
 }  

Code has been separated out
116

Graphics Toolkits

Timings difference

 
 void update(float *dir, TargetData *data,  
 vec3 target, size_t count)  
 {  
 for (size_t i = 0; i < count; ++i)  
 dir[i] = dot3(data->pos[i], target) * data->boost[i];  
 }  

math - 20
I$ miss - 200

D$ miss - 200 D$ miss - 200 D$ miss - 200

117

Graphics Toolkits

Structures of Arrays and Design

Try to view SoA vs. objects as a change in abstraction,
not as a “Do I really have to break everything I was taught
about encapsulation?”

When designing for SoA, you create higher-level
abstractions with operators and kernels which are
applied to collections of data.

You apply SoA design to the largest masses of data in the
most computation intensive parts. There are still places
for polymorphisms and more complex data structures, e.g.
graphs, but they operate in different levels, or sections of
code which are not performance sensitive.

118

Graphics Toolkits

Wrapping Up
The CPU – memory performance difference has profound
impact.

Memory management choices have orders of magnitude performance
impact, and among the most important design criteria after selection of
algorithms. A performance-oriented design must consider all the layers
from application to libraries/language to operating system to processor
and memory interconnect.

Bandwidth is usually adequate for all but the most demanding applications.
1-3 layers of cache help hide a very significant memory access latency if
and only if you structure the application to have excellent locality for
code, data and virtual memory pages and their tables. Best performance for
large data volumes requires hardware-predictable access of structures-of-
arrays / arrays-of-structures.

Memory access latency is non-uniform and depends on physical design and
interconnect distance to memory, thus operating system allocation strategy.
Application may need to guide operating system on strategy choices.

119

120

E x e rc i s e  
A o S v s S o A

Graphics Toolkits

Today’s OSes give processes a flat* linear
virtual address space: the same linear
address in two different address spaces means
two entirely different physical addresses.

Virtual and real physical memory is divided in
pages, usually 4kB, but optionally 1-4MB. The
OS provides the CPU per-process page tables
to map a virtual address to a contiguous
physical page frame plus offset, which in
turn translates to memory bank, row and
column.

Page tables themselves use memory,
consume L2+ cache space, and are never
swapped out.

Even if processes share physical page frames,
the page tables are not shared. With 4kB
pages, large address spaces mean big page
tables, even if the memory itself is shared:
there’s over 2MB of page tables for every 1GB
of committed address space.+

Virtual Memory

* CPUs also segment or otherwise divide memory in
regions; details in the references. “Flat” does not mean
“simple”, the address space can be a fairly hairy object.

+ 2GB VSIZE × 128 processes requires 0.5GB page tables.
121

Graphics Toolkits

Special cache hardware called TLB,
translation look-aside buffer, accelerates
virtual-to-physical address mapping to avoid
a full page table walk on every memory op.
TLB fits only a limited number of pages.

Virtual Address Translation

A page which isn’t present or valid causes a
page fault. The OS handles these, e.g. code
page is read in from a file on disk on first use.
Some page table changes force a synchronous
update on all processors (“TLB shootdown”).

122

Graphics Toolkits

Starting Programs
$ cmsRun somecfg.py
OS creates a new process
- create and initialise a new address space,

initial thread stack, command line args
- mmap code, data + other loadable segments

from the main executable, dynamic linker
(creating page tables)

- start thread in the dynamic linker

Dynamic linker finishes the start-up
- mmap code, data segments recursively from

all shared library dependencies
- relocate position independent code, data
- invoke init sections, start executing

As process executes…
- page fault code, data in as needed

$ readelf –l cmsRun

Elf file type is EXEC (Executable file)
Entry point 0x80519f0
There are 8 program headers, starting at offset 52

Program Headers:
$ readelf –d cmsRun

Dynamic section at offset 0x1c01c contains 60 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libFWCoreFramework.so]
 0x00000001 (NEEDED) Shared library: [libFWCoreService...so]
 0x00000001 (NEEDED) Shared library: [libFWCorePython...so]
 0x00000001 (NEEDED) Shared library: [libDataFormatsCommon.so]
 0x00000001 (NEEDED) Shared library: [libFWCoreParameter...so]
 0x00000001 (NEEDED) Shared library: [libDataFormats...so]
 0x00000001 (NEEDED) Shared library: [libFWCoreMessage...so]
 0x00000001 (NEEDED) Shared library: [libFWCorePlugin...so] 123

Graphics Toolkits

After a while…
Process has loaded even more code and
has allocated quite a bit of heap space
- Invoked the dynamic linker to bring in even

more shared libraries, each of which
mmaped more code and data segments

- Called sbrk, mmap to acquire additional
heap memory from the operating system

Result: 1060MB VSIZE, 850MB RSS, 
600 libraries, 1370 memory regions
- Each shared library has separate code and

data pages, which is bad for virtual
address space locality and stresses TLB

- Random scatter of mapped library pages (a
security feature) × lots of libraries  
= dense address map with many holes  
= fragmented address space and heap

- This produced 2.3MB new page tables
- Definitely not smart – dwarfs the capacity

of even the latest hardware

1024x1024 pixel image map of the
address space of a 32-bit cmsRun
process. Every pixel is one 4096B page.
Orange = code, green = data, blue =
heap, stack. Total VSIZE 1060MB of
which 230 MB is code(!)

0GB

1GB

2GB

3GB

4GB

124

125

E x e rc i s e  
P ro c e s s A d d re s s S p a c e

Graphics Toolkits

Operating System and Memory
The operating system manages processes and their address spaces.

Each process has a virtual linear address space to itself, isolated from other
address spaces and the kernel itself. Each process has one or more threads,
which share the address space but have a separate stack and execution state.

The operating system manages memory allocation and sharing.
Memory is used for kernel itself and files in the buffer cache. Applications can
share memory by referring to shared physical pages: just memory blocks,
buffer cache regions, or special objects such as pipe memory with vmsplice().
Methods to share memory include fork(), mmap() or shmget().
On NUMA systems the OS also manages process-to-physical memory
mapping. In practice application affinity hinting is necessary (cf. numactl).

126

Graphics Toolkits

About Shared Memory
Shared memory is not special – it is completely natural and widely
used on modern systems, with many ways to initiate sharing:

Calling mmap() on a file in multiple processes can be used to create shared
read-only or read-write mappings, on any file region. Example: shared
library position independent code. One way to share static read-only data
is to wrap and load it as a shared library. Suitable use of mmap() + {f,m}
advise() can map windows of the OS buffer cache and provide hints on
future use.

Calling fork() without exec() makes copy-on-write shared memory of the
entire process address space; writing to a page after fork() creates a private
copy. One of the simplest ways to create writeable transient shared
memory without file association is to use anonymous mmap() and then call
fork().

It’s also possible to create persistent named shared memory with shmget().

Pages can be shuffled around with vmsplice(), tee() and remap_file_pages().

127

Graphics Toolkits

B’s page #137 and A’s page #123 are
mapped to the same physical frame
#629, creating shared memory.

#629 could be a read-only page of
common l ibrary code, writeable
memory created with mmap() + fork() or
shmget().

A special page, called "zero-page", is a
read only, zero-filled, page which the OS
might use when allocating memory with
calloc. The OS will replace it with a real
page, whenever a process tries to write
to it.

About Shared Memory

128

129

E x e rc i s e  
Ze ro P a g e s

Graphics Toolkits

Key Factor #3: Locality
Detecting, measuring and fixing poor locality: discussed
extensively in other sessions this week and somewhat already in
this one.

Using suitable pool allocators is known to help, but no easy-to-use analysis
tools. You can try evaluate heap trashing and allocation size distribution to
some extent with e.g. igprof heap snapshots, even GLIBC’s memusage. In
general the better your unit and regression test collection, the easier the job.

Do pay attention to excessive virtual memory use – code and
data.

A good rule of thumb is the larger the process, the slower it gets, with a few
well designed applications an exception to this. 200+ MB of machine code
from 500+ shared libraries is usually just preposterously bad packaging and /
or large-scale code bloat. Fix packaging, make big shared libraries only, use
coverage testing to figure out what you really need, fix coding problems, if
nothing else works, reorder binaries to separate “hot” and “cold” segments.

130

Memory Crisis  
 
Closer look at local i ty

131

Graphics Toolkits

Typical Core Memory
Architecture Today
Out-of-order, super-scalar, deep pipelines.
Significant capacity to reorder and buffer
memory operations, will automatically
prefetch several different access patterns.
32kB L1I + L1D caches, 128-entry L1
ITLB, 64-entry L1 DTLB ≅ 512kB code,
256kB data addressing capacity.
512-entry L2 TLB ≅ 2MB code + data
addressing capacity – less than fits in L3
cache, but more than one core share of L3.
All this exists to combat the memory wall.
BUT for all practical purposes a modern
CPU performs well on large data volumes
only if organised as arrays-of-structures
(AoS) or structures-of-arrays (SoA) –
pointer-rich “objects” will perform poorly.

[Wikipedia / Intel Nehalem / By
“Appaloosa” / GFDL]

quadruple associative Instruction Cache 32 KByte,

128-entry TLB-4K, 7 TLB-2/4M per thread

Prefetch Buffer (16 Bytes)

Predecode &

Instruction Length Decoder

Instruction Queue

18 x86 Instructions

Alignment

MacroOp Fusion

Complex

Decoder

Simple

Decoder

Simple

Decoder

Simple

Decoder

Decoded Instruction Queue (28 µOP entries)

MicroOp Fusion

Loop

Stream

Decoder

2 x Register Allocation Table (RAT)

Reorder Buffer (128-entry) fused

2 x

Retirement

Register

File

Reservation Station (128-entry) fused

Store

Addr.

Unit

AGU

Load

Addr.

Unit

AGU

Store

Data

Micro

Instruction

Sequencer

256 KByte

8-way,

64 Byte

Cacheline,

private

L2-Cache

512-entry

L2-TLB-4K

Integer/

MMX ALU,

Branch

SSE

ADD

Move

Integer/

MMX

ALU

SSE

ADD

Move

FP

ADD

Integer/

MMX ALU,

2x AGU

SSE

MUL/DIV

Move

FP

MUL

Memory Order Buffer (MOB)

octruple associative Data Cache 32 KByte,

64-entry TLB-4K, 32-entry TLB-2/4M

Branch

Prediction

global/bimodal,

loop, indirect

jmp

128

Port 4 Port 0Port 3 Port 2 Port 5 Port 1

128 128

128 128 128

Result Bus
256

Quick Path

Inter-

connect

DDR3

Memory

Controller

Common

L3-Cache

8 MByte

Uncore

4 x 20 Bit

6,4 GT/s

3 x 64 Bit

1,33 GT/s

GT/s: gigatransfers per second

Intel Nehalem microarchitecture

132

Graphics Toolkits

This logical linked list…

Logical vs. Real Data Structures

Could be scattered in virtual
address space like this…

And in physical  
memory like this…

0GB

1GB

2GB

3GB

4GB

133

Graphics Toolkits

Logical vs. Real Data Structures

The scatter is unimportant as
long as Ln and TLB caches hide
all latencies. Otherwise you
must explicitly arrange for a
better memory ordering.

There is no silver bullet to
make this problem go away.

Custom application-aware
memory managers, such as
pool / slab / arena allocators,
other data structure changes,
and affinity hints are the tools.

0GB

1GB

2GB

3GB

4GB

134

Graphics Toolkits

Wrapping Up
The CPU – memory performance difference has profound
impact.

Operating systems create illusion of one flat virtual address space. In
reality the virtual memory is divided into pages, and pages are mapped to
physical memory. Performance critical application must account for this
in their design for both data and code management.

A process =~ file-backed page mappings for code and read-only data plus
anonymous page mappings for stack, heap and global data. Creating
many memory regions, for example by loading many shared libraries,
harms performance because good performance requires static page
working set which fits in TLB. Frequent page table changes are costly,
some operations require a system-wide stall to synchronise the memory
views of all the processors.

Shared memory is created by pointing pages tables of several processes to
the same physical memory pages. Shared memory is common place, and
there are numerous convenient ways to create sharing. 135

Graphics Toolkits

Exotic Efficiency Issues
Applications may need to become NUMA aware.

May have to if on NUMA hardware, and either make significant use of
concurrency and shared memory (multi-threading or multi-processing); or
need more memory than a single physical node has. Read up on numactl.

Poor cache use, not getting enough out of prefetching hardware.

Make sure you use SoA/AoS data structures, then see the other sessions
this week on cache awareness, proper strides, alignment, collision
avoidance, SIMD, and which tools to use identify problems and possible
solutions.

Multi-threaded systems may suffer from cache line contention for heavily
accessed data (e.g. locks). Lots of research out there; typical solution is
finer grained locks, or eliminating locking using e.g. read-copy-update
(RCU). Use multithread aware allocators (like jemalloc , TCmalloc).

Killed by large page tables or TLBs? Look into using huge pages. 136

Graphics Toolkits

Summary
Memory management is expensive

Real-world limitations of CPUs and programming languages make
memory management a significant factor in overall performance. The
solution will vary with technical evolution. If you missed everything else,
remember this: get the latency down. May mean you have to design to use
hardware-aware AoS/SoA data structures.

No silver bullet

There’s no silver bullet for making your applications scream. For top
performance you have to invest in real understanding and custom
application-specific solutions. Beware memory churn in particular.

Know your tools

There are tools out there which will reduce the mysteries a lot. Now we
will combine several of them for more serious exercises!

137

138

E x e rc i s e  
S h a r e d l i b r a r i e s

139

E x e rc i s e  
Wo r d l i s t f i l t e r

E x e rc i s e  
L a r g e A p p l i c a t i o n

140

Old "arcade" games did not have enough raw CPU power to copy memory
around, nor enough memory to store whole levels as big images images. They
relied on the ability of the (graphics) hardware to "compose" scan-lines from

predefined tiles, superimposing the result with sprites(e.g. the player) images.
Tiles and sprites were actually sitting at fixed locations.

For the child nerd in all of us...

141

https://www.youtube.com/watch?v=mxfmxi-boyo

The video is generated (in realtime) with a 177KB
executable on 2007 hardware

For the teenage nerd inside all of us...

142

https://www.youtube.com/watch?v=mxfmxi-boyo

